Particle Identification
for a
Linear Collider Detector

How do we decide what we need?

Linear Collider Detector Workshop
University of Michigan
March 27th. 1999
PID in Europe & Japan studies?

✔ Chris Damerell:
 – “The European regional workshop has just ended, with no work done on particle ID.”
 – “My understanding is that the Japanese (like the Europeans) have not yet done anything on this.”

✔ PID has dropped below the event horizon in physics studies and overall detector optimisation.

✔ Are they right?
Keystone PID Summary

Hitoshi outlined two philosophies:

A Identify physics requiring PID.

B Plan for PID, if it is there we will use it.

In practice: \[\Psi = \alpha A + \beta B \]

In a perfect world: \[\alpha \approx 1, \beta \approx 0 \]

Hitoshi’s summary \[\Rightarrow \alpha >> \beta \]

Experience indicates uses for PID that we will not think of until we have data. Or at least, not for quite a while yet. \[\Rightarrow \alpha \approx \beta \]
What does this mean in practice?

✓ We *do* need to keep searching for specific examples to justify PID explicitly
 – we may even find a “golden” mode

✓ The PID “group” is so small that we could not possibly cover the phase space of LC physics, thoroughly and in reasonable time.

✓ The existing physics groups should be primed to ask PID questions.
What should the PID group do?

- Select a few particularly promising topics to give practical examples.
- Provide the physics groups with guidelines on plausible PID capabilities.
- PID class for simulation/reconstruction.
Promising topics for PID

✓ Strange, charm, bottom tagging

\[e^+ e^- \rightarrow t\bar{t} \rightarrow W^+ b W^- \bar{b} \]

\[e^+ e^- \rightarrow HA \rightarrow bbbb, bb\tau\tau \]

\[W^+ \rightarrow c\bar{s} \quad above \quad ud \]

\[t \rightarrow W^+ s, \quad \Rightarrow V_{ts} \]

Asymmetries

✓ Multi-jet analysis - net flavor?

✓ Your favorite process here!
PID Technology Review

✔ What do we get for “free” i.e. from the required sub-systems?
 - e, μ, h from calorimetry
 - e, μ, π, K, p from tracker (dE/dx)

✔ What could we get from a PID subsystem?
 - Transition Radiation Detector
 - Scintillator Time-of-flight
 - Threshold Cerenkov
 - Ring imaging Cerenkov
PID Sub-system impact?

- Material in front of the calorimeter
 - How much is tolerable? What is the spec.?
- Calorimeter $ vs. inner radius
- Track resolution (BL^2)
- The goal is the best LC physics
 \[\Rightarrow \text{coherent design optimization of all sub-systems together} \]
Example: Cerenkov Ring Imaging

✓ Basic formulae:

\[\cos \theta = \frac{1}{\beta n} \quad \Rightarrow \quad p = \beta \gamma m \]

\[N_\gamma = N_0 L z^2 \sin^2 \theta \quad \gamma_{\text{threshold}} = \left(1 - \frac{1}{n^2}\right)^{-\frac{1}{2}} \]

✓ In practice need \(<N_\gamma> \approx 10 \)

✓ DIRC -- the most compact Cerenkov option

– quartz radiator, \(n=1.474, L=1.8\text{cm} \)

\[\beta_{\text{threshold}} = 0.68, \gamma_{\text{threshold}} = 1.36 \quad \Rightarrow \quad p_{\text{threshold}} = 0.92 m_{\mu, \pi, K, p} \]

\[N_\gamma (\beta \approx 1, \text{normal, pmf}) \approx 30 \]
Angular resolution & PID

✓ Maximum momentum for separation by n_σ standard deviations

\[
 p_{\text{max}} = \left(\frac{\beta^2 \Delta m^2 \beta_t \gamma_t N^{1/2} \gamma}{2n_\sigma \sigma_\theta} \right)^{1/2}
\]

✓ For 3σ π-K separation in 18 mm quartz

\[
 p_{\text{max}} = \frac{0.14}{\sigma_\theta^{1/2}} N^{1/4} \gamma
\]

✓ About 4 GeV/c for BaBar-DIRC
 - double radiator thickness \Rightarrow 20% increase
 - 1/2 resolution \Rightarrow 40% increase
PID R&D proposals pending

✔ H. Yamamoto: Identify specific processes -
 - Heavy, long-lived, charged particles (c.f. Fermilab workshop)
 - Other SUSY? Other?

✔ RJW: Detector capabilities review + specific process -
 - Top studies - discrimination from WW, new physics, t→Ws, polarization? (cf M. Peskin)
 - Flavor asymmetries: A_{s,c,b} ?
 - B tag, à la B-factories - Higgs studies?